Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

A	Q	A	

General Certificate of Secondary Education June 2015

Computer Science

4512/2

Unit 2 Computing Fundamentals

Wednesday 3 June 2015 9.00 am to 10.30 am

You will need no other materials
You must not use a calculator.

Time allowed

1 hour 30 minutes

Instructions

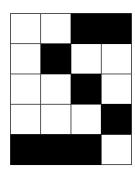
- Use black ink or black ball-point pen. Use pencil only for drawing.
- Answer all questions.
- Questions 4(b)(ii) and 8 should be answered in continuous prose. In these questions you will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 84.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use				
Examiner's Initials				
Question	Mark			
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
TOTAL				

	Ansı	wer all questions in th	e spaces provided.	
1 (a)	State the denary re	oresentation of the bir	nary number 101110	10. [1 mark]
1 (b)	State the hexadecir	nal representation of	the binary number 1	110. [1 mark]
1 (c)	State the denary reworking.	oresentation of the he	xadecimal number 4	C. You must show your [2 marks]
1 (d)	Place the following on the largest).	quantities in order of s	ize (1 – 4, where 1 i	s the smallest and 4 is
		Quantity	Order (1 – 4)	
		15 bits		
		3 nibbles		
		2 bytes		
		1 kilobyte		
				[3 marks]



ASCII is a character-encoding system that uses seven bits to represent each character. Complete the table stating the binary representation of the character g.

Character	Binary Representation
f	110 0110
g	

[1 mark]

1 (f) The following grid represents a bitmap image where a black pixel is represented using the bit pattern 00 and a white pixel is represented using the bit pattern 01. The binary encoding of each row is shown next to the image.

01010000

01000101

01010001

01010100

0000001

1 (f) (i) Which one of the following images has the correct encoding?

	Image	Encoding	Tick one box
Α		010100	
A		000101	
В		00010100	
Ь		00000000	
C		000100	
C		010000	

[1 mark]

1 (f) (ii)	State the maximum number of different colours that can be encoded when using two bits for each pixel. [1 mark]	
1 (f) (iii)	State the minimum number of bits needed to encode 32 different colours. [1 mark]	
1 (f) (iv)	State one factor, other than the number of bits used to represent individual colours, that can affect the quality of a bitmap image. [1 mark]	
2 (a)	Items of data can be combined together to form a data structure. State the name of a programming language you are familiar with. Programming language:	
	Data structure:	

(b)	A programmer is developing a program that needs to record the names of a group of students. Give three advantages of using a data structure information instead of using individual, separate variables for each name	
	Advantage 1	
	Advantage 2	
	Advantage 3	
(a)	Define the term algorithm .	[2 marks
(a)	Define the term algorithm .	[2 marks
(a)	Define the term algorithm .	[2 marks
(a)	Define the term algorithm.	[2 marks
(a)	Define the term algorithm. Question 3 continues on the next page	[2 marks
(a)		[2 marks]
(a)		[2 marks

3 (b) Two algorithms, **Algorithm 1** and **Algorithm 2**, are shown below. Both algorithms have the same purpose.

Note: array indexing starts at 1.

Algorithm 1

Aigontiiii i

```
a ← "diffie"

matched ← false

i ← 0

WHILE i < 5

i ← i + 1

IF arr[i] = a THEN

matched ← true

ENDIF

ENDWHILE
```

Algorithm 2

```
a ← "diffie"
matched ← false
i ← 0
WHILE i < 5 AND matched = false
i ← i + 1
IF arr[i] = a THEN
matched ← true
ENDIF
ENDWHILE</pre>
```

The completed trace tables for Algorithm 1 and Algorithm 2 are shown below when the array arr is ["kleene", "diffie", "naur", "karp", "hopper"].

matched	i
false	0
	1
true	2
	3
	4
	5

matched	i
false	0
	1
true	2

Completed trace table for Algorithm 1

Completed trace table for **Algorithm 2**

3 (b) (i)	Both algorithms use a variable called \mathtt{i} for the same purpose.	State the purpose of the
	variable i.	[1 mark]

3 (b) (ii)	What is the data type of the variable matched?	[1 mark]	
3 (b) (iii)	Algorithm 1 and Algorithm 2 both have the same purpose. State this purpose		
3 (b) (iv)	Give one reason why Algorithm 2 could be considered to be a better algorithm		
			6

Turn over for the next question

Four stages from a simplified waterfall software development life cycle model are given 4 (a) below. Write the appropriate stage in the corresponding box in the diagram: Implementation **Testing** Design **Analysis** Stage 1 Stage 2 Stage 3 Stage 4 [3 marks] 4 (b) (i) State another software development life cycle model. [1 mark]

4 (b) (ii)	Explain the advantages and/or disadvantages of using prototyping when developing solutions. In your answer you must also include a description of what prototyping is.
	In this question you will be marked on your ability to use good English, to organise information clearly and to use specialist vocabulary where appropriate.
	[6 marks]

5 The two tables **Airport** and **Country** form a relational database.

Airport

AirportName	Code	CountryName	Terminals
Manchester	MAN	UK	3
Heathrow	LHR	UK	5
Frankfurt	FRA	Germany	2
Gatwick	LGW	UK	2
Hamburg	HAM	Germany	2
Fiumicino	FCO	Italy	4

Country

CountryName	Currency	TimeZone
Germany	Euro	1
Italy	Euro	1
UK	Pound Sterling	0

5 (a) (i)	Which one of the three fields in the table Country will be the primary key?	[1 mark]
5 (a) (ii)	How many records are there in the table Airport ?	[1 mark]
5 (a) (iii)	Describe how a relationship has been created between the table Airport and Country .	the table
		[2 marks]
		•••••

SQL Cor	nmand	Tick one box
PUT IN	TO Airport VALUES ('Stansted', 'STN', 'UK', 1)	
	Airport SET AirportName = 'Stansted', 'STN', Terminals = 1 WHERE CountryName = 'UK'	
TMCEDE	TNITTO 7 '	
Termina	INTO Airport (AirportName, Code, CountryName, als) VALUES ('Stansted', 'STN', 'UK', 1) sults of executing the following SQL query on this relational database) .

Turn over for the next question

6 (a)	What is a computer system?	[1 mark]
6 (b)	Memory and the processor are two essential pieces of hardware. Explain, vereference to both memory and the processor, how a computer processes in	
6 (c)	Give one reason why a CPU with two cores might perform faster than an ed CPU with only one core.	uivalent

6 (d)	The following a	re types of memory and storage (labelled	l A – F):	
		A. Cache memoryB. Magnetic mediaC. Non-volatile memoryD. Optical mediaE. ROMF. Solid state media		
	For each of the storage it best of	descriptions in the table, write the label describes.	of the type of me	emory or
		Description	Label (A – F)	
		Uses a laser to read the data		
		Contents cannot be edited		
		Small and very fast storage found close to the processor		
				[3 marks]
6 (e)	State one situa	tion when virtual memory might be need	ed.	[1 mark]
		Turn over for the next question		

7 The following function calculates the second hand price of different models of car.

The parameter condition is an integer with a value between 1 and 4 where 1 is excellent and 4 is very bad.

```
FUNCTION CarPrice (model, condition, age)
  cost \leftarrow 0
  IF model = 'Daley' THEN
    cost ← 6000
  ELSE
    IF model = 'Minty' THEN
       cost ← 4000
    ELSE
       cost ← 2000
    ENDIF
  ENDIF
  CASE condition OF
     1: cost \leftarrow cost - 100
     2: cost \leftarrow cost - 300
     3: cost \leftarrow cost - 500
     4: cost ← cost - 1000
  ENDCASE
  cost ← cost / age
  RETURN cost
ENDFUNCTION
```

7 (a) FUNCTION and ENDFUNCTION are keywords in CarPrice that indicate it is a function. Which other keyword indicates that it is a function?

[1 mark]

7	(b)	ick the most appropriate data type of the variable cos	+
•	(10)	ick the most appropriate data type of the variable COS	· L.

Data Type	Tick one box
Boolean	
Character	
Real	
String	

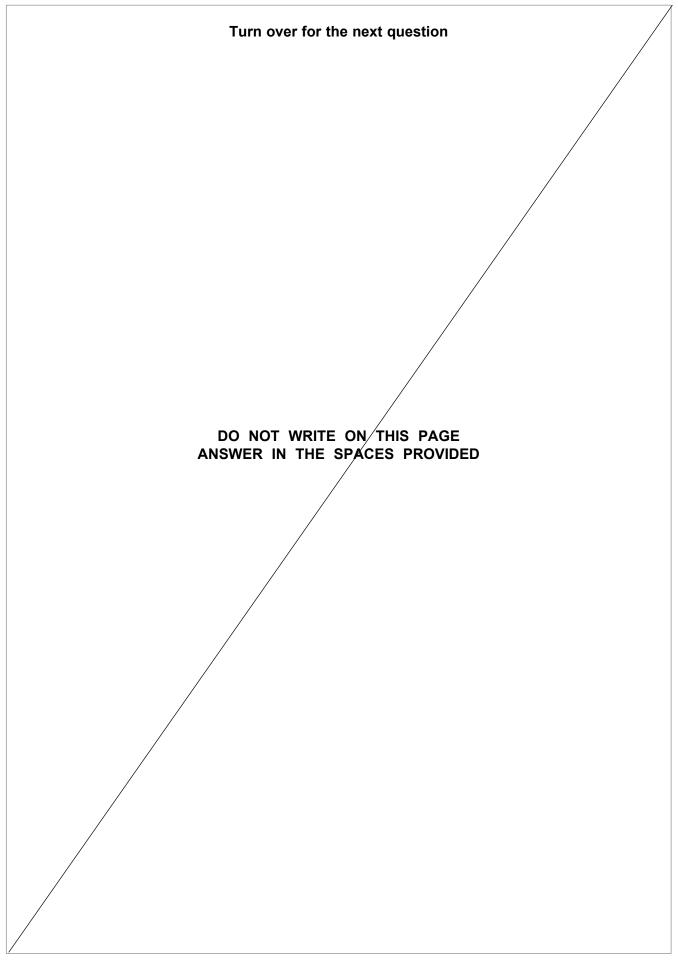
[1 mark]

7 (c)	Complete the trace table below showing the changes in the variable cost when the
	function CarPrice is called with the following arguments:

CarPrice('Tidy', 4, 2)

cost

[4 marks]


7 (d)	State three advantages of using functions/procedures when developing a program.
	[3 marks]

9

8	Discuss the advantages and disadvantages of connecting a computer to a network.	
	In this question you will be marked on your ability to use good English, to organise information clearly and to use specialist vocabulary where appropriate.	
	[6 marks]	

- An English teacher wants to estimate how long it should take his students to read a book. You have been asked to develop an algorithm to calculate this estimate. The algorithm must do the following:
 - ask the teacher how many pages the book has and store this in an appropriately named variable
 - for every page in the book the algorithm should:
 - ask the teacher if the page looks 'easy' or 'difficult'
 - o if a page is 'difficult' then the total number of seconds should increase by 100
 - o if a page is 'easy' then the total number of seconds should increase by 40
 - after the teacher has entered the difficulty level for all the pages, the algorithm should output the estimated number of seconds that it should take to read the book.

Write pseudocode or draw a flowchart that represents this algorithm. [9 marks]

10	A built-in function commonly found in programming languages is one that finds the character in a string at a specific position. In some programming languages this function is called CharAt.		
	CharAt(str, i) returns the character found at position i of the string str. For example,		
	CharAt("abc", 1) returns 'a' CharAt("abc", 3) returns 'c'		
10 (a) (i)	What value will be returned by the function call CharAt ("hello", 5)? [1 mark]		
10 (a) (ii)	What value will be returned by the function call CharAt("goodbye", (1+3))? [1 mark]		

10 (b) A palindrome is a string that is the same read forwards or backwards. For example, "abba" and "abcba" are both palindromes but "abcbb" is not.

The following algorithm uses the function <code>CharAt</code> to check if a string is a palindrome. This algorithm also uses the <code>LEN</code> function. <code>LEN</code> returns the length of a string, for example <code>LEN</code> ("cpu") returns 3.

Note: line numbers have been shown but are not part of the algorithm.

```
1
    strIn ← USERINPUT
2
    isPalindrome ← true
3
    iUp \leftarrow 1
4
    iDown ← LEN(strIn)
5
    WHILE iUp < iDown
6
      IF CharAt(strIn, iUp) ≠ CharAt(strIn, iDown) THEN
7
         isPalindrome ← false
8
      ENDIF
9
      iUp \leftarrow iUp + 1
10
      iDown ← iDown - 1
11
    ENDWHILE
```

Complete the trace table for this algorithm when the user input is "abcaba".

strIn	isPalindrome	iUp	iDown
abcaba			

[6 marks]

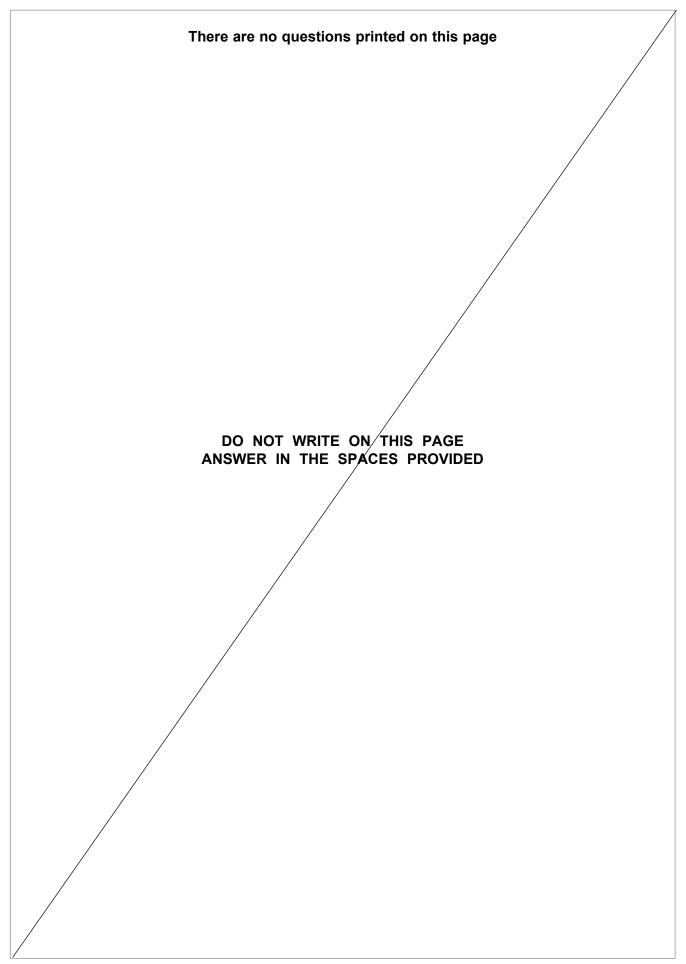
Question 10 continues on the next page

10 (c) (i) A programmer develops a program from this algorithm but mistakenly types WHIKE instead of WHILE when implementing **line 5**. Tick the type of error that has been made.

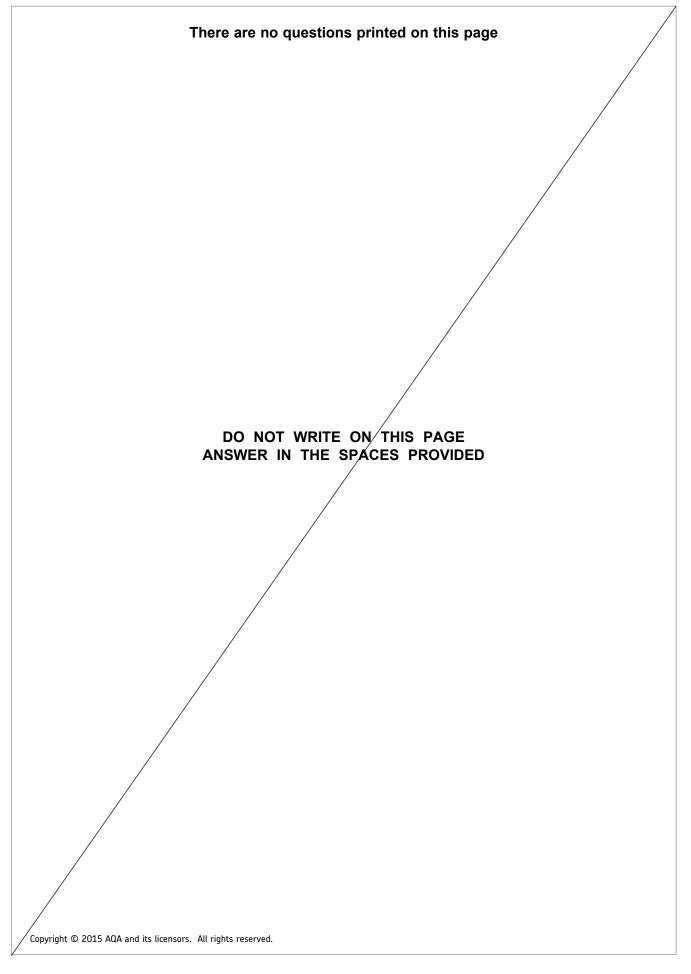
Type of error	Tick one box
Logical	
Run-time	
Syntax	

[1 mark]

10 (c) (ii) The programmer makes another mistake and types a > symbol instead of a < symbol when implementing **line 5**. Tick the type of error that will occur when the program is run.


Type of error	Tick one box
Logical	
Run-time	
Syntax	

[1 mark]


10

END OF QUESTIONS

