Knowledge Organiser AQA Design & Technology 8552 ## 1: Forces and Stresses | | 1: Forces and Stresses | | | | | | | | |---|------------------------|--|--|--|----------|--|--|--| | | Force | Description | A fair test for each | How a material / | Examples | | | | | | | | force/stress. | object can be | | | | | | | | | | adapted to | | | | | | | | | | resist | | | | | | | Tension | Forces pulling in opposite directions. | Apply the same weight to
each material and
suspended in the same
manner. | Concrete can have steel bars inserted to reinforce. | # | | | | | | Compression | Forces that are trying to crush or shorten. | Insert materials into a vice/clamp and apply the same amount of twists to the handle. | Composite panels can
have a honeycomb
structure sandwiched
in the middle to resist. | | | | | | | Bending | Flexing force | Apply the same weight to the material. | Steel beams have an l
profile to resist
bending. | | | | | | | Torsion | Twisting force. | Use clamps & stands to hold the materials and turn in opposite directions at the same angle. | The diagonals on a tower crane help the structure against torsion. | | | | | | | Shear | A strain produced when an object is subjected to | Place the material
between a tool that
works in opposite | Bolts are hardened
and have unthreaded
shanks to help stop | | | | | | - | | opposing forces. | directions. e.g. Shears | shearing. | | | | | ## 2. Improving functionality of materials | Process | Description | Result | Example | Visual | |-----------------------|---|--|---|---------| | | | | | Example | | Lamination | Layering of thin
materials | Depending on the
direction of
lamination it can
make boards stiffer
or actually more
flexible | Plywood: Laminations at 90 degrees to each other - Rigid Flexi-ply: laminations all the same direction - Bendy | | | Bending /
Folding | Folding a 90
degree edge
on sheet metal
/ plastic | Makes the panel
more rigid | Body panels on cars | | | Webbing | Modern
polymer
fabrics woven
together | Extremely strong and durable fabric | Seat belts | | | Fabric
interfacing | A
strengthening
material added
to the unseen
face of a fabric | Adds strength /
shape | Shirt collars | 7 | ## 1: The Modification of properties for specific purposes | Process | Material | Purpose | |----------------------------|----------|---| | Seasoning | Timber | Removes the moisture content so that the timber will not shrink, warp and twist | | Annealing
(heating) | Copper | Softens the copper to make it more malleable | | Addition of
Stabilisers | PVC | Stops plastic become brittle with exposure to the sun | Timber being seasoned in a kiln Copper bowl being annealed Metal compounds (stabilisers) are added to PVC for UV protection